Quantitative separation of arterial and venous cerebral blood volume increases during voluntary locomotion
نویسندگان
چکیده
Voluntary locomotion is accompanied by large increases in cortical activity and localized increases in cerebral blood volume (CBV). We sought to quantitatively determine the spatial and temporal dynamics of voluntary locomotion-evoked cerebral hemodynamic changes. We measured single vessel dilations using two-photon microscopy and cortex-wide changes in CBV-related signal using intrinsic optical signal (IOS) imaging in head-fixed mice freely locomoting on a spherical treadmill. During bouts of locomotion, arteries dilated rapidly, while veins distended slightly and recovered slowly. The dynamics of diameter changes of both vessel types could be captured using a simple linear convolution model. Using these single vessel measurements, we developed a novel analysis approach to separate out spatially and temporally distinct arterial and venous components of the location-specific hemodynamic response functions (HRF) for IOS. The HRF of each pixel of was well fit by a sum of a fast arterial and a slow venous component. The HRFs of pixels in the limb representations of somatosensory cortex had a large arterial contribution, while in the frontal cortex the arterial contribution to the HRF was negligible. The venous contribution was much less localized, and was substantial in the frontal cortex. The spatial pattern and amplitude of these HRFs in response to locomotion in the cortex were robust across imaging sessions. Separating the more localized arterial component from the diffuse venous signals will be useful for dealing with the dynamic signals generated by naturalistic stimuli.
منابع مشابه
Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography.
Hypercapnia induces cerebral vasodilation and increases cerebral blood volume (CBV), and hypocapnia induces cerebral vasoconstriction and decreases CBV. Cerebral blood volume measured by positron emission tomography (PET) is the sum of three components, that is, arterial, capillary, and venous blood volumes. Changes in arterial blood volume (V(a)) and CBV during hypercapnia and hypocapnia were ...
متن کاملNeurovascular coupling and decoupling in the cortex during voluntary locomotion.
Hemodynamic signals are widely used to infer neural activity in the brain. We tested the hypothesis that hemodynamic signals faithfully report neural activity during voluntary behaviors by measuring cerebral blood volume (CBV) and neural activity in the somatosensory cortex and frontal cortex of head-fixed mice during locomotion. Locomotion induced a large and robust increase in firing rate and...
متن کاملRelative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI.
Measurement of cerebral arterial and venous blood volumes during increased cerebral blood flow can provide important information regarding hemodynamic regulation under normal, pathological, and neuronally active conditions. In particular, the change in venous blood volume induced by neural activity is one critical component of the blood oxygenation level-dependent (BOLD) signal because BOLD con...
متن کاملI-46: Obstetrical Doppler
Accurate assessment of gestational age, fetal growth, and the detection of fetal and placental abnormalities are major benefits of sonography. Color Doppler can be used to assist in the identification of vascular architecture, detection of vascular pathology and visualization of blood flow changes associated with physiologic processes and disease states. The clinical applications of obstetrical...
متن کاملModeling the Effect of Changes in Arterial Blood Volume on the BOLD Signal
Purpose: The BOLD effect is modeled as primarily due to a mismatch of cerebral blood flow (CBF) and cerebral metabolic rate of O2 (CMRO2), but it is still not clear how we should include the effects of changes in cerebral blood volume (CBV) in the model. Having an accurate model is important because it serves as the framework for interpreting combined CBF and BOLD measurements in the calibrated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 105 شماره
صفحات -
تاریخ انتشار 2015